Long-Lived Binding of Sox2 to DNA Predicts Cell Fate in the Four-Cell Mouse Embryo

نویسندگان

  • Melanie D. White
  • Juan F. Angiolini
  • Yanina D. Alvarez
  • Gurpreet Kaur
  • Ziqing W. Zhao
  • Esteban Mocskos
  • Luciana Bruno
  • Stephanie Bissiere
  • Valeria Levi
  • Nicolas Plachta
چکیده

Transcription factor (TF) binding to DNA is fundamental for gene regulation. However, it remains unknown how the dynamics of TF-DNA interactions change during cell-fate determination in vivo. Here, we use photo-activatable FCS to quantify TF-DNA binding in single cells of developing mouse embryos. In blastocysts, the TFs Oct4 and Sox2, which control pluripotency, bind DNA more stably in pluripotent than in extraembryonic cells. By contrast, in the four-cell embryo, Sox2 engages in more long-lived interactions than does Oct4. Sox2 long-lived binding varies between blastomeres and is regulated by H3R26 methylation. Live-cell tracking demonstrates that those blastomeres with more long-lived binding contribute more pluripotent progeny, and reducing H3R26 methylation decreases long-lived binding, Sox2 target expression, and pluripotent cell numbers. Therefore, Sox2-DNA binding predicts mammalian cell fate as early as the four-cell stage. More generally, we reveal the dynamic repartitioning of TFs between DNA sites driven by physiological epigenetic changes. VIDEO ABSTRACT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancement of NMRI Mouse Embryo Development In vitro

Most of the systematic studies used in the development of human embryo culture media have been done first on mouse embryos. The general use of NMRI outbred mice is a model for toxicology, teratology and pharmacology. NMRI mouse embryo exhibit the two-cell block in vitro. The objective of this study was to evaluate and compare the effects of four kinds of culture media on the development of zygo...

متن کامل

P-94: Mouse Embryo Vitrification Cannot Effect on Global DNA Methylation in Preimplantation Stage

Background: Embryo vitrification was effectively used for assisted reproductive techniques. Despite the undeniable benefits of vitrification, cooling and warming stress, and cytotoxicity of cryoprotectant may affect the DNA methylation that have an important role in gene activation and silencing. In the present study effects of 2-cell embryo vitrification on DNA methylation in hatched blastocys...

متن کامل

P-126: Stem Cell Factor Increases Blastocyst Formation in Mouse Two-Cell Embryo Culture

Background: It is demonstrated that c-Kit( receptor of stem cell factor) mRNA is expressed in late 2-cell stage to the expanded and hatched blastocyst and the stem cell factor (SCF) transcript is detected in the oviduct and uterus. The aim of this study was to investigate the effect of different doses of SCF on mouse 2-cell embryo development in vitro. Materials and Methods: 4-6 weeks old femal...

متن کامل

P-30: Developmental Capacity and Blastocyst Formation of Thawed Tetrahedral Versus Non-Tetrahedral 4-cell Stage Mouse Embryos After Vitrification

Background: It was reported in a literature that approximately one third of the 4-cell stage embryos did not exhibit a tetrahedral shape. Non-tetrahedral embryos showed a lower in vitro developmental potential than tetrahedral embryos. Recently vitrification technology has been widely employed for embryo cryopreservation. The objective of this study was to prove our hypothesis that vitrified - ...

متن کامل

P-128: The Effect of DNA Methyl Transferase1 Inhibitor (RG108) on DNA Methylation Pattern of Cloned Mouse Embryos

Background: In somatic cell nuclear transfer (SCNT) method of cloning, transferred nucleus should be dedifferentiated from differentiated state to embryonic state. Molecular analysis showed that the reprogramming in the transferred nucleus was incomplete and cloned embryos have epigenetic abnormalities such as high DNA methylations levels. Since methylation in pre-implantation embryos has a cri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 165  شماره 

صفحات  -

تاریخ انتشار 2016